Publications

Pre-Prints / In Preparation

2024

  1. Gaussian mixture Taylor approximations of risk measures constrained by PDEs with Gaussian random field inputs
    Dingcheng Luo, Joshua Chen, Peng Chen, and Omar Ghattas
    Aug 2024
  2. Inference of Heterogeneous Material Properties via Infinite-Dimensional Integrated DIC
    Joseph Kirchhoff, Dingcheng Luo, Thomas O’Leary-Roseberry, and Omar Ghattas
    Aug 2024

2023

  1. Efficient PDE-Constrained optimization under high-dimensional uncertainty using derivative-informed neural operators
    Dingcheng Luo, Thomas O’Leary-Roseberry, Peng Chen, and Omar Ghattas
    Jun 2023

Journal Articles

2024

  1. SOUPy: Stochastic PDE-constrained optimization under high-dimensional uncertainty in Python
    Dingcheng LuoPeng Chen, Thomas O’Leary-Roseberry, Umberto Villa, and Omar Ghattas
    Journal of Open Source Software, Jun 2024

2023

  1. Optimal design of chemoepitaxial guideposts for the directed self-assembly of block copolymer systems using an inexact Newton algorithm
    Dingcheng Luo, Lianghao Cao, Peng ChenOmar Ghattas, and J. Tinsley Oden
    Journal of Computational Physics, Jul 2023
  2. Investigating steady unconfined groundwater flow using Physics Informed Neural Networks
    Mohammad Afzal Shadab, Dingcheng Luo, Eric Hiatt, Yiran Shen, and Marc Andre Hesse
    Advances in Water Resources, Jul 2023